SEMESTRAL EXAMINATION

COMPLEX ANALYSIS B. MATH III YEAR I SEMESTER, 2008-2009

Notations: $U = \{z : |z| < 1\}$, $H(\Omega)$ is the space of holomorphic functions on the region $\Omega, C(X)$ is the space of continuous functions on the compact space X, γ^* is the range of the path γ .

- 1. Does there exist a non-constant entire function f such that $|f(z^3)| \le 1 + |z|$ for all z? [15]
- 2. Prove that if $\gamma:[0,1]\to\mathbb{C}$ is a continuously differentiable then $f(z)=\int \frac{g(\zeta)}{\zeta-z}d\zeta$ defines a holomorphic function on $\mathbb{C}\backslash\gamma^*$ for any continuous function g on γ^* .
- 3. If $f \in C(\bar{U}) \cap H(U)$ and |f(z) 1 2z| < 1 for |z| = 1 prove that f has a unique zero in U. [10]
- 4. Let $z_n \in \mathbb{C}\backslash\{0\}$ for all n. Prove that $\prod_{n=1}^{\infty}z_n$ converges if and only if ∞

$$\sum_{n=1}^{\infty} Log(z_n) \text{ converges.}$$
 [15]

- 5. Let f and g be entire functions, $\epsilon, \Delta \in (0, \infty)$ and $1 \le |f(z)| \le |g(z)| |z|^{-1-\epsilon}$ for $|z| \ge \Delta$. Prove that the sum of the residues of $\frac{f}{g}$ at all its poles is 0. [15]
- 6. Let $\Omega = \{z : \operatorname{Re}(z) > 0\}$. Give an example of a bijection from Ω onto U which is bi-holomorphic. Is it possible to find a continuous bijection from $\bar{\Omega}$ onto \bar{U} which is holomorphic in Ω and maps Ω onto U? [12+3]

7. Evaluate
$$\int_{\gamma} \frac{3z^3+2}{(z-1)(z^2+9)} dz$$
 where $\gamma(t) = 4e^{2\pi it} (0 \le t \le 1)$. [10]

8. Evaluate $\int_{0}^{\infty} \frac{x^2}{x^6+1} dx$ by the method of residues. [Exact value need not be computed]